
COMPUTER SYSTEMS LABORATORY

STANFORDUNIVERSITY"STANFORD,CA94305-2192

A Prolog Emulator

Evan Tick

Technical Note No. CSL-TN-87-324

May 1987

(NASA-CR-19240B) A PROLOG

(Stanford Univ.) 55 p

EMULATOR N9 i-'t1600

Unclas

Z?/61 0146979

The work described herein was supported by NASA under consortium

agreement NCA2-109, using facilities provided under contract NAGW
419.

A Prolog Emulator

by

Evan Tick

Technical Note No. CSL-TN-87-324

May 1987

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305

Abstract

This note describes an efficient software emulator for the Warren Abstract Machine (WAM)

Prolog architecture. The version of the WAM implemented is called Lcode. The Lcode
emulator, written in C, executes the "naive reverse" benchmark at 3900 LIPS. The emulator is

one of a set of tools used to measure the memory-referencing characteristics and performance of
Prolog programs. These tools include a compiler, assembler, and memory simulators. An
overview of the Lcode architecture is given here, followed by a description and listing of the

emulator code implementing each Lcode instruction. This note will be of special interest to
those studying the WAM and its performance characteristics. In general, this note will be of
interest to those creating efficient software emulators for abstract machine architectures.

Key Words and Phrases: Prolog, Warren Abstract Machine, instruction set architecture,
emulation

7"

Copyright © 1987
by

Evan Tick

Table of Contents
1. Introduction
2. The Lcode System

2.1 Compiler
2.2 Assembler

2.3 Emulator

2.4 Storage Management
3. The Lcode Emulator

3.1 Emulator Macros

3.2 Get Instructions

3.2.1 get_constant i,c
3.2.2 get_list i
3.2.3 get_structure i,f
3.2.4 get_value_v i,j
3.2.5 get_variable_v i,j

3.3 Put Instructions

3.3.1 put_constant i,c
3.3.2

3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

put_list i
put_structure i,f
put_unsafe_value_y i,j
put_unsafe_integer_v i,j
put value_v i,j
put_variable_x i,j

3.3.8 put_varlable_y i,j
3.4 Unify Instructions

3.4.1 unify_constant c
3.4.2 unify_local_value_v i
3.4.3 unify_value_x i
3.4.4 unify_value_y i
3.4.5 unify_variable_v i
3.4.6 unify_void n

3.5 Control Instructions
3.5.1 allocate n

3.5.2 branch L,n,i
3.5.3 call L

3.5.4 comp_v n,i,j
3.5.5 cond_v n,i
3.5.6 cut, cut_strong, and cutd L
3.5.7 deallocate
3.5.8 execute L
3.5.9 fail

3.5.10 jump L
3.5.11 proceed

3.6 Indexing Instructions
3.6.1 hash L,f
3.6.2 retry L
3.6.3 retry_me_else L

1

3

3

4

5

7

10
12

13
13
14
14
15
15

16
16
16
16
16
17
17
17
18
18
18
18
19
20
20

20
21
21
21
22
22
22
23

25
25
25
26
26
26
26
27
27

3.6.4 switch constant n
m

3.6.5 switch_structure n
3.6.6 switch_type Lc,LI,Ls
3.6.7 trust L
3.6.8 trust_me_else fail
3.6.9 try n,L

3.7 try_me_else n,L
3.8 Arithmetic Instructions
3.9 General Unifier
3.10 Built-in Predicates

3.10.1 arg/3
3.10.2 call/1
3.10.3 functor/3

3.10.4 length/2
3.10.5 ==/2
3.10.6 =..]2

Appendix A. Lcode Instruction Set Summary

27
28
28
29
29
29
30
30
31
33
34
35
36
37
38
39

40

III

List of Figures
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1 •

Memory Performance Methodology
Lcode Example: append/3
Lcode Environment Contents
Lcode Choice Point Contents

Emulator Top Level

4
6
9
9

10

T

IV °

List of Tables
Table 2-1:
Table 2-2:
Table 3-1:
Table 3-2:
Table 3-3:
Table A-1:
Table A-2:
Table A-3:

Stanford Emulation Laboratory Prolog Tools

Lcode Data Object Formats
Lcode Instruction Set

Simple Lcode Built-in Predicates
Complex Lcode Built-in Predicates
Lcode Instruction Set Formats
Lcode Instruction Reference Characteristics

Lcode Characteristics by Type

3
7

11
33
34
42
44
46

1. Introduction

The Warren Abstract Machine (WAM) Prolog architecture was designed during the summer of

1983 at SRI by D. H. D. Warren [20]. It represents a rethinking of the DEC-10 Prolog

architecture described in his dissertation [18] and [19]. The WAM is currently implemented on

general purpose hosts via native-code (e.g., Tricia [3]), interpretation (e.g., Quintus Prolog [13]),

and microcoded interpretation (e.g., on the VAX 8600 [7]), and on dedicated hosts (e.g., the UC

Berkeley Programmed Logic Machine (PLM)[4] and the ICOT PSI-II [12]). In addition,

extensions of the WAM architecture for parallel execution have been developed [8, 11, 1].

The WAM architecture is attractive because its storage model is very efficient. The storage

areas are split into an instruction (code) space and data space. The data space is split into a heap,

stack, trail and push-down-list (pdl). These areas are managed in a stack-like manner, offering a

limited form of automatic garbage collection. Structures are stored in the heap, and are

manipulated using a structure copying policy. Choice points and environments are stored in the

stack. Choice points freeze all stack objects below them on the stack, creating the need for

referencing deep environments. The stack-like management of these areas clean up garbage

created for failed branches during non-determinate program execution. A traditional garbage

collector is still required however for cleaning up garbage created as byproducts of deterministic

program execution. The WAM architecture does not include a specification for this type of

garbage collection. The trail is used to hold the addresses of logical variables in the stack and

heap which have been bound, but may need to be unbound should failure cause backtracking to

an execution point before the binding was created. The pdl is used by general unification as an

argument stack for recursive unifications.

This report describes in great detail a modified version of the WAM instruction set, called

Lcode. Lcode simplifies many aspects of the WAM, and fills in other regions conspicuously

absent in the original specification. A description of a system of tools used to measure the

memory performance of Lcode benchmarks is given. These tools include a Prolog to Lcode

compiler, assembler and Lcode emulator. The compiler is a modification of the UC Berkeley

PLM compiler, which is well documented in [17]. In this report only the Lcode emulator is

described in detail, including abstractions of the actual C-code used to implement the emulator.

Knowledge of the WAM instruction set and general architecture are necessary to understand

this report. For an overview of the WAM architecture, the reader is referred to [14]. For

detaileddescriptions,see[20, 6, 5]. Lcode simplifies the WAM by removing environment

trimming. Lcode simplifies the PLM architecture by removing cdr-coding. Lcode extends the

WAM by including _thmetic instructionsl cut instructions, andconditi0nal branch instructions.

The semantics of all instructions are described and compared to the original WAM semantics

when appropriate.

• 3

2. The Lcode System

The Lcode system is a set of tools developed to empirically measure the memory

characteristics of Prolog benchmarks. Memory reference behavior is measured using address

trace-driven memory simulators. Traces are produced using an Lcode emulator that executes
I

object flies produced by an Lcode assembler. The assembler translates assembler files produced

by a Prolog compiler. These tools are summarized in Table 2-1 and illustrated in Figure 2-i.

The tools run on the Stanford Emulation Laboratory VAX-750, under Unix 1 4.3 BSD.

tool inout output how implemented

compiler Prolog source Lcode assembler Prolog
assembler Lcode assembler binary object LEX/YACC
emulator binary object trace file C
simulator trace file statistics C

Table 2-1: Stanford Emulation Laboratory Prolog Tools

written in Prolog, is about 2900 source lines. The modifications are listed below.

[15] for a complete description of the optimizations.

• removal of cdr-coding

cdr-coding was removed to simplify the architecture.

2.1 Compiler

The compiler is a modified version of the UC Berkeley PLM compiler [17]. The compiler,

Refer to

static-sized environments

environment trimming was removed to simplify the architecture.

increased number of registers
16 registers were implemented as opposed to eight in the PLM.

arithmetic instructions

arithmetic and other primitive operations, e.g., ,ear/l, have been lifted into the
instruction set.

conditional branches

a peephole optimization was introduced wherein under certain circumstances,

simple builtin conditionals, e.g., >/2, can be moved up into the head. If a
conditional can be moved up in front of choice point creation, it is replaced with a
conditional branch. Subsequently, if the choice point creation meets a cut, both are
removed.

IUnix is a trademark of Bell Laboratory

w

4 •

Prolog
sou rce

PLM compiler/
Stanford optimizer

I assembler

emulator

t
trace
file

I
I

i ' h"eve'! I"Imemory o o o cache
simulator simulator

+ + +
Figure 2-1: Memory Performance Methodology

s incremental indexing

this type of indexing is a slight modification of the method outlined in [20], whereby
the number of branches is reduced.

2.2 Assembler

The assembler is written in C around a LEX/YACC parser [10, 9], about 1000 source lines.

The function of the assembler is to transform the symbolic intermediate code generated by the

compiler into an object image readable by the emulator. The advantage of having the emulator

read an object image is the much reduced time in loading executable programs.

Syntacticdetailsfollow. Theserulesarenot importantto the userbecausethecompilerhas

takenover the burdenof codegeneration. In rare instances,however,the usermay wish to

determinetheperformanceof new compilationstrategieswithout modifying thecompiler. In

thesecases,directmodificationandcreationof assemblercodeis advantageous.

Commentscan appearanywherebetweena "%" and newline. White spacecan be used

liberally; however,symbolscannothavewhite spacebetweencharacters,labelsmust start in

leftmostcolumnandopcodesmustnotstartin theleftmostcolumn.

Labels,opcodesandfunctorsaresymbolsof not morethanninecharacters.A labelmayhave

anoptionalcolonasits lastcharacter,which is ignored.Labelsandopcodesmustnot begin with

a digit, but otherwise can consist of a wide variety of symbols. Functors must be specified as

name/arity where name is a symbol and arity is an integer. Integer constants must be preceded

by a "&"

Each assembler file must contain at least one and directive, which causes immediate

termination of assembly at that location. There are two assembler flags. -s signifies that the

symbol table should be dumped to standard output. -w signifies that assembler warnings should

be suppressed.

Figure 2-2 shows the Lcode compiler output for the append/3 program. Superfluous labels

are generated and should be ignored. The neck instruction is used in various experiments but is

not included in the basic Lcode architecture (it is ignored by the standard Lcode emulator).

2.3 Emulator

The Prolog emulator used to measure the memory performance of benchmark programs, is

implemented in C. Arbitrarily large programs (to the limit of the VAX address space) can be

emulated. The emulator kernel is about 2000 source lines with another 3000 source lines of

support code. The emulator kernel is consists of a single large function wherein each

intermediate level instruction is implemented. Primitive procedures not transformed by the

compiler are dynamically interpreted in C. Notably, I/O primitives are implemented in

LEX/YACC. A side effect of executing the program is the production of a memory reference

trace file. Both data and instruction references can be traced. Another emulator option is

procedure profiling, useful in determining Prolog program hot spots. Memory references made

3016:

3022:

3061:

3017:

3026:

procedure

switch on term

try
trust

append/3

3016,_3017, fail

3, _3022
3026

get_constant

get_value
neck

proceed

XO, nil

XI, X2

get_list XO

unify_variable X3

unify_variable XO

get_list X2

unify_local_value X3

unify_variable X2
neck

execute

Figure 2.2:

append/3

LcodeExample:appen&3

by primitive procedures are counted as other references; however, these primitives are not

restricted to using the state registers of the WAM model. The assumption is that these primitives

would be microcoded and required temporary registers would be available. The emulator has

pfimitve debugging capabilities. The code space can be displayed through a disassembler and a

single break point can be set. Memory areas and terms can be displayed symbolically. The

emulator (with tracing off) runs at 3900 LIPS for naive reverse.

The emulator emulates Lcode, described in the next section in detail. WAM instructions are

emulated in close correspondence to the detailed semantics given in [20]. Common Lcode

operations which lend themselves to alternative semantics include general unification, cut,

indexing instructions and builtins. The emulator implementation of these operations are

described in the following sections. In addition, the emulator can emulate the Prolog CIF, split

stack, and shadow register architectures [16].

° 7

2.4 Storage Management

Throughout the Lcode system, design decisions were made with speed and simplicity the most

important considerations. The emulator is only used to analyze program execution and therefore

user interface, error recovery and ease of program development were minor or nonexistent

considerations. Note that the specifics of Lcode data types, tags, storage areas and storage

management, as defined below, do not accurately resemble a realistic Prolog implementation.

Many details, necessary for such an implementation (e.g., garbage collection), are purposely

missing to facilitate analysis of the features which are included. The Lcode system is used to

emulate a number of alternative architecture attributes and therefore is representative of a range

of Prolog architectures, e.g., PLM and WAM.

The Lcode emulator manages six memory areas: code space, symbol table, heap, trail, stack

and pdl. The code space contains the Lcode image. Assert and retract are not implemented, so

this area is fixed. The symbol table holds the print-names of atoms, functors, procedures and

top-level variables. The heap holds structures and unsafe values and is dynamically managed as

a stack. The stack holds environments and choice points. The pdl is a push down stack used by

general unification and univ (==/2), both of which are implemented as recursive functions. The

emulator does not check for memory area overflows. No facilities for data area shifting,

trimming or garbage collection are implemented. In addition, cut does not garbage-collect the

trail. Maximum data area sizes may be specified as emulator input, and stay fixed during

execution.

integer
nil

atom

functor

ref

unbound

list

structure

<-- 4 bytes -->

2s-complement value 011

00000000100000000100000000100000111

000000001 identifier I 111

arity I identifier I 111

long address O0
self address O0

long address 01

long address 10

Table2-2: Lcode Data O_ectFormats

A data object is a word (32 bits) composed of a variable length tag and a value. Lcode data

objects are defined in Table 2-2. An identifier is an offset into the emulator's symbol table.

8 •

Unification of atoms, for instance, is done by comparing identifiers. An Lcode linker has not

been implemented, so that entire Lcode programs must be assembled together to allow proper

identifier assignment. A long address is a full 30 bit address pointing to another data object. An

unbound variable points to itself (a self address) to differentiate it from an indirect reference.

Note the Lcode (and WAM) architecture is structure-copying, i.e., unifying an unbound

variable with a structure involves copying the entire structure in the heap. In addition, the Lcode

emulator uses standard list coding, requiring two heap words per list cell.

Lcode instructions are one or two words long. Minimal encoding is de-emphasized to allow

fast emulation. The first halfword of each instruction is an opcode. An opcode is the address of

the C code emulating that instruction. This allows fast instruction dispatch and requires that the

emulator kernel fit in the first 64 Kbytes of virtual memory.

Arbitrarily large programs can be compiled and executed. This is implemented with both

absolute and instruction relative addressing. To avoid a linkage phase, absolute addressing is

actually implemented as base relative, where the base is the first location of the program. Base

relative addresses are a full 32 bits long and are used only by inter-procedural branches, i.e.,

call and execute. Instruction relative addresses are 16 bits and are used by all other

branches, i.e., all intra-procedural branches. It is for this distinction that the jump instruction

was introduced to implement disjunction, rather than with the execute instruction, as is done

in the PLM compiler. Note that intra-procedural branch offsets for the PLM are only 8 bits.

Lcode choice points are composed of a fixed size bookkeeping area (7 words) and a variable

size argument area (c.f., PLM choice points which are fixed size of 15 words). Lcode

environments are composed of a fixed size bookkeeping area (4 words -- c.f., WAM with 2

words) and a variable size permanent variable area. Both choice points and environments remain

statically fixed in size once they are created (c.f., WAM which trims environments).

An environment is created by saving the following four "bookkeeping" values on the stack: E,

B, CP, and n, where n is the number of permanent variables saved in the environment, n+4

words are allocated for the environment. The environment is summarized in Figure 2-3. Note

that the n entry is not strictly necessary and can be removed if the put_unsafe_value_y

implementation is modified. The Lcode environment is summarized in Figure 2-3. In the

standard emulator, E points to the top (the highest memory address) of the environment (to n).

n

E

B

CP

Y0

number of permanent variables

(tag signifies determinancy)
points to current choice point

continuation program pointer

permanent variables

Yn-i

Figure 2-3: Lcode Environment Contents

Xn-1 valid argument registers

x0

H

TR

B

P

CP

E

n

Figure 2-4:

current heap pointer

current trail pointer
current backtrack pointer

(to previous choice point)
address of clause to try next

continuation pointer
current environment pointer

number of arguments

Lcode Choice Point Contents

An Lcode choice point is created by saving the following n+7 values on the stack: the value n,

temporary registers Xn-1 through X0, the current environment pointer g, the current

continuation CP, the address P of the next clause to try, a pointer to the previous choice point I3,

the current trail pointer TR, and the current heap pointer H. HB is then set to the current heap

pointer and B is set to point to the current top of stack. The choice point is summarized in Figure

2-4. In the standard, single-stack emulator, 13 points to the bottom (the lowest memory address)

of the choice point (to n).

10

3. The Lcode Emulator

Table 3-1 summarizes the Lcode instruction set. The operands are denoted as C -- atom,

integer or functor, Yi -- permanent variable (offset in current environment), Vi -- argument

register or permanent variable, L -- instruction address and n -- integer. In the following

sections, for each operation, an abstract listing of the Lcode emulator C-code is given.

Execution of each instruction results either in failure or success. All failures are processed by

the fail routine given in Section 3.5.9. Success implies the dispatch of the next instruction

(pointed to by P). Macros used in the code segments are listed in Section 3.1. The components

of the environments and choice points defined in Figures 2-3 and 2-4 are accessed in the

emulator with macros. For example, BE represents the environment pointer in the current

choice point and E...B represents the choice point pointer in the current environment. These are

noted in the text as E (B) and B (E) respectively.

top: (

#ifdef DEBUG

if (P==break_address)

s ingl e_step= 1;

if (single_step) {

save state;

debug (&state) ;

restore state;

}

/* compile time option */

/* single break address */

/* single step flag */

/* save Prolog state */

/* enter debugger */

/* restore Prolog state */

#endif DEBUG

label = VV; /* get opcode (address) */

asm(" jmp *_label"); /* jump to address */

)

Figure 3-1: Emulator Top Level

The Lcode instruction set formats are summarized in Appendix A. The emulator uses the

loosely word encoded formats because on the VAX host, this facilitates decoding. The formats

are wasteful of space, for instance allocating a byte for a temporary register specifier. The

macros used for instruction object accesses are V, w and VVVV. These access one, two and four

bytes respectively. On the VAX, it is advantageous to access objects aligned on byte boundaries.

Therefore all instructions are composed of pieces occupying integral numbers of bytes. To

ensure this fit, different instructions may use both V and W, for instance, to access register

specifiers. Opcodes, however, always occupy two bytes. The value of an instruction's opcode is

11

goalmatching
put_variable Vi, Ai

put_constant Ai, C

put_nil Ai

put_list Ai

put_structure Ai, C

put_value Vi, Ai

put_unsafe_value Yi, Ai

head matching

get_variable Vi, Ai

get_constant Ai, C

get_nil Ai

get_list Ai

get_structure Ai, C

get_value Vi, Ai

clausecon_ol

allocate n

deallocate

call L

execute L

proceed

escape n

indexin_
branch n,Ai, L

comp n, Vi, Vj

cond n, Vi

hash C, L

jump L

switch_type Lc, LI, Ls
switch constant n

switch_structure n

a_thmetic

add Ai,Aj,Ak

add constant Ai,Aj,C

decrement Ai,Aj

divide Ai,Aj,Ak

divide constant Ai,Aj,C

increment Ai, Aj

mod Ai,Aj,Ak

mod constant Ai,Aj,C

mul_iplyAi,Aj,Ak

multiply_constant Ai,Aj,C

subtract Ai,Aj,Ak

subtract_constant Ai,Aj,C

Table 3-1: Lcode Instruction Set

structu_ matchinR

unify_variable Vi

unify_constant C

unify_nil

unify_value Vi

unify_local_value Vi

unify_void n

procedu_ con_ol
try n,L

retry L

trust L

tr_ me else n,L

retry, me else L
trust me else fail

cut

cut_strong
cutd L

fail

12

the address, within the emulator, of the code for executing that instruction. Therefore to

dispatch an instruction requires VAX assembly code to jump to address specified by the

instruction's opcode. Although this method is not especially reliable or portable, it is fast. The

top-level of the emulator is shown in Figure 3-1.

The support functions of the Lcode system, such as the loader, disassembler, I/O package,

debugger, symbol-table manager, etc., are not described in this note. These support functions are

highly system dependent and unrelated to Prolog architecture issues. As was previously

mentioned, and is typical for systems such as this, the support code size exceeds the emulator

kernel code size.

3.1 Emulator Macros

typedef union {int w; char b; short h; } blob;

8truct symtab_rec{ /* symbol table entry */

char type; /* type of entry *I

char length; /* length of identifier name */

char key[40] ; /* identifier name */

int value;}; /* value of entry */

/* instruction object access functions */

#define AsBlobPtr (x) (Cblob *) (x))

#define V ((AsBlobPtr (P++)->b) & 0x000000ff)

#dofine VV (P+=2, ((AsBlobPtr (P-2) ->h) & 0x0000ffff))

#define VVVV (P+=4, AsBlobPtr (P-4) ->w)

/* data object access functions */

#define tagof(x) ((x) & 0x00000007)

#define arity(x) (((x) & 0xff000000) >> 24)

#define ident (x) (((x) & 0x00ffff00) >> 8)

#define intval (x) ((x) >>3)

#define MaskArity (f, a) ((a<<24) I f)

/* data

#define IsRef (x)

#define IsList (x)

#define IsStrct (x)

#define IsInteger (x)

#define IsFunctor (x)

#define IsAtom (x)

#define IsNil (x)

object type check functions */

(((x) • 3)==0)
(((x) _ 3)==z)
(((x) & 3)==2)

(((x) a 7)-,=3)
(((x) a 7)==7)
(IsFunctor(x) && (arity(x)==0))

(IsFunctor(x) && (ident (x)==0))

/* data object type conversion functions */

#define AlRef(x) ((x) & 0xfffffffc)

#define AsStrct(x) ((x) I 0x00000005)

#define AsList(x) ((x) I 0x00000001)

#define car(x) *(AsRef(x))

#define cdr(x) *(AsRef(x)+4)

/* primitive Prolog operations */

#define deref(x) {int t; while (IsRef (x) && (t = x,x - *t,t != x});}

#define trail(x) if ((((x)>STACKBOT)&&((x)<3)) lJ ((x)<HB)) *TR-- - (x);

#define bindT (x) {*T = (x) ; trail (T) ; }

13

#define bindS (x}

#define pops

#define pushR (x)

{*S - (x); trail(S) ;}

*S; S+=4;

{*H- (x); trail(H); H++;}

#define ref

#define list

#define strct

#define integer

#define atom

0: case 4:

I: case 5:

2: case 6:

3

7

#define E S

#define E E

#define E_¢_
#define E B

#define Y'('x)

*(E-0)
*(E-l)
*(Z-2)
*(E-3)
*(E-(x)-4)

/* env access functions */

/* permanent registers */

#define B B

#define B S

#define B H

#define H E

#define B CP

#define B TR

#define B P

#define B X (x)m

* (B-0)

* (B-l)

* (B-2)

* (B-3)

* (B-4)

* (B-5)
* (B-6)

* (B- (x) -7)

/* cp access functions */

#define NIL 7

#define LIST FUNCTOR ...
#define STACKBOT ..;

#define CODEBOT ...

#define PDLBOT ...

/* nil symtab key */

/* ./2 symtab key */
/* bottom addr of stack */

/* bottom addr of code */

/* bottom addr of pdl */

/* abstract machine state */

int X[16];
int B,CP,E,H, HB,P,Q,S;

int R,T,U,W,Z;

char rmode, wmode, dmode;

struct symtab_rec symtab[...];

/* temporary registers */

/* state registers */

/* temporary registers */
/* modes */

/* symbol table */

3.2 Get Instructions

3.2.1 get_constant i,c

This instruction represents a head argument which is a constant, i is a temporary register and

c is a constant, get...nil can be implemented with c==nil. The instruction gets the value of

register xi and dereferences it. If the result is a reference to an unbound variable, that variable

is bound to c, and the binding is trailed if necessary. Otherwise, the result is compared with e,

and if the two values are not identical, backtracking occurs.

14

get_=onstant : (

S - X[VV]; a+ref(S);

switch (tagof (S)) {

case ref: bindS (VVVV) ; break;

cane atom:

cane integer: if (VVVV _ S) break;

case list :

cane strct: gotc fail;

} }

3.2.2 get_list i

This instruction marks the beginning of a list occurring as a head argument. The instruction

gets the value of register Xi and dereferences it.

If the result is a reference to an unbound variable then the variable is bound to a new list

pointer pointing at the top of heap. The binding is trailed if necessary and execution proceeds in

"write" mode. H will be used by two subsequent unify instructions to access the head and the

tail of the list. Note that Lcode does not implement cdr-coding.

Otherwise, if the result is a list then the S pointer is set to point to the arguments of the list and

execution proceeds in read mode. Otherwise, backtracking occurs.

get_list : {

S = X[W]; darer(s);

switch (tagof(S)) {

case ref: binds (AsList (H)) ;

wmode w 1 ;

break;

case list: S = ToRef (S);

rmode m I;

break;

cane atom:

case strct:

case integer:

} }
goto fail;

3.2.3 get_structure i,f

This instruction marks the beginning of a structure (without embedded substructures)

occurring as a head argument, f is the functor of the desired structure (name and arity encoded

in one word). The instruction gets the value of register Xi and dereferences it.

If the result is a reference to a variable, that variable is bound to a new structure pointer

pointing to the top of heap. The binding is trailed if necessary, the functor f is pushed onto the

15

heap, and execution proceeds in "write" mode. Subsequent unify instructions access the

components of the structure with the H pointer.

Otherwise, if the result is a structure and its functor is identical to f, the S pointer is set to

point to the arguments of the structure and execution proceeds in read mode. Otherwise,

backtracking occurs.

get_structure :

S = X[VV]; deref(S);

switch (tagof (S)) {

case ref :

bindS (AsStruct (H)) ;

pushH (VVVV) ;

wmode = I;

break;

case strct :

S = ToRef(S); /* strip tag */

R = popS;

if (VVVV = R) {

rmode = I;

break;

}
_Se atom:

case list :

case integer: goto fail;

l }

3.2.4 get_value_v i,1

This instruction represents a head argument which is a bound variable. The instruction unifies

the contents of register X3 with the contents of register Vi. The semantics in [20] indicate that

for get_value_x, the final result is left in register Xj to speed up subsequent dereferences.

This optimization is removed to simplify the implementation.

get_value_x: {U = X[V] ; T - X[V] ; goto unify; }

get_value_v: {U = YC_); T = X[V]; goto unify;}

3.2.5 get_varlable_v i,j

This instruction represents a head argument which is an unbound variable.

loads the contents of register Xj into register vi.

get_variable_x: {T = V; X[T] = X[V];}

get_variable_y: {T = V; Y(T) = X[V];}

The instruction

16

3.3 Put Instructions

3.3.1 put_constant i,c

This instruction represents a goal argument which is a constant, c. The instruction loads c into

register Xi. put_nil i can be implemented with put_constant i, nil.

put.con=taJat: {T - W; X[T] - VV'_;}

3.3.2 put_list i

This instruction marks the beginning of a list occurring as a goal argument and is similar to

get_list encountering an unbound variable. The instruction places a list pointer

corresponding to the top of heap into register xi. Execution then proceeds in write mode.

put_li=t: {X[VV] - AsLIs_(H); wmode = 1;}

3.3.3 put_structure i,f

This instruction marks the beginning of a structure occurring as a goal argument and is similar

to get_structure encountering an unbound variable. The instruction pushes the functor f

onto the top of heap via the H pointer and puts a corresponding structure pointer into register xi.

Execution then proceeds in write mode.

put_=tructure : {
X[VV] = AsStruct (H) ;

pu=hH _ ;
wmode _ I;

}

3.3.4 put_unsafe_value_y i,j

This instruction represents the last occurrence of an unsafe variable. The instruction

dereferences Yi. If Yi dereferences to a variable in the current environment, that variable is

bound to a new global variable created on the top of heap, the binding is trailed if necessary, and

register Xj is set to a reference to the new global variable. Otherwise, the dereferenced value of

Yi is loaded directly into register Xj.

17

put_unsafe_value_y: {

S = YfV); deref(S);

if (((z-4-m_s) < s) _;
binds (H) ;

X[V] = H;

pushH (H) ;

} else
x[v] - s;

}

((_.-4)>- s)) {

3.3.5 put_unsafe_integerv i,j

This instruction has been introduced to facilitate compilation of efficient code for arithmetic

expressions. It dereferences register Vi and checks if it is an integer. If it passes the type check,

the dereferenced value is loaded into register x]. Otherwise the failure occurs.

put_unsafe_integer_x: {
S - X[V]; deter(s);

if (!Islnteger(S)) goto fail;

X[V] = S;

}

put_unsafe_integer_.y: {
S = YCV); deref(S);

if (!IeInteger(S)) goto fail;
X[V] = S;

}

3.3.6 put_value_v i,]

This instruction represents a goal argument which is a bound variable. The instruction loads

the value of register vi into register Xj. Note that put...valuo x is identical to

get_variable_x.

put_value_x: {T - V; X[V] = X[T] ; }

put_value_y: {T = V; X[V] = Y(T);}

3.3.7 put_variable_x i,j

This instruction represents an goal argument which is an unbound variable. The instruction

creates an unbound variable on the heap, and puts a reference to it into registers xj and Xi.

put_variable_x: {X[V] = X[V] = H; pushH(H); }

18

3.3.8 put_variable_y i,j

This instruction represents a goal argument which is an unbound permanent variable. The

instruction puts a reference to permanent variable Yi into register Xj and makes Yi an unbound

variable.

put_variable y: {
9 -- E-V-4; /* address of Yi */

XU_] - *S - S;

}

3.4 Unify Instructions

3.4.1 unify_constant c

This instruction represents a structure argument which is a constant, c. In read mode, it is

similar to get...eonatant. The instruction gets the next argument from S, and dereferences it.

If the result is a reference to a variable, that variable is bound to the constant e, and the binding

is trailed if necessary. If the result is a non-reference value, that value is compared with the

constant c and backtracking occurs if the two values are not identical. In write mode, the

constant e is pushed onto the heap via the H pointer.

unify_constant: {

if (rmode) {

T _ popS; deref (T) ;

switch (tagof (T)) {

case ref : bindT (VVVV) ;

break;

case integer: if (VVVV-----T) break;

case list :

case atom:

case strct: gore fail;

}
} ella /* copy_integer */

pushH (VVVV) ;

3.4.2 unify_local_value_v i

This instruction represents a structure argument which is a variable bound to a value that is not

necessarily global. In read mode, the actions are identical to those of the unify.._value_v

instruction. In write mode, the value of register vi is dereferenced. If the result is not a

reference to a variable on the stack then the dereferenced result is pushed onto the heap via the H

pointer. If the result is a reference to a variable on the stack, a new unbound variable is pushed

19

onto the heap via the H pointer, the variable on the stack is bound to a reference to the new

unbound variable, and the stack binding is trailed if necessary. Note that to test if an address is

in the stack, we only check if it is above the bottom of the stack because the heap is allocated

below the stack.

unify_local_value_x: {
if (rmode)

gore unify_value_x;
else { /* copy_local_value x */
RIVV;

T - X[R]; deref(T) ;

if (STACKBOT < T) {

X[R] = H;

bindT (H) ;

puahH (H)

} else

pushH (T) ;

} }

unify_local_value_y : {

if (rmode)

gore unify_valuey;

else { /* copy_local_value_y */

T - Y(W); deref(T);

if (STACKBOT < T)

b_aT (H);
pushH (H) ;

} else

pushH (T) ;

} }

3.4.3 unifyvalue_x i

This instruction represents a structure argument which is a variable bound to a global value. In

read mode, it gets the next argument from S, and unifies it with the value in register Xi. The

WAM specification indicates that the dereferenced result of the unification should be loaded into

register xi. This optimization has been measured and does not significantly reduce the number

of memory references made by typical programs. It has been removed to simplify the

implementation. In write mode, the value of variable xi is pushed onto the heap via the H

pointer.

unify_value_x : {
o - x[w];
if (rmo_) (

T = popS ;

goto unify;

} else /* copy_value_x */
pushH (U) ;

)

20

3.4.4 unify_value_y i

This instruction represents a structure argument which is a variable bound to some global

value. In read mode, it gets the next argument from S, and unifies it with the value in register

Xi. In write mode, the value of variable Yi is pushed onto the top of heap via the H pointer.

unlfy_value_y: {

O - YC_V);
if (rmode) {

T m popS;

gore unify;

} else /* mopy_value_y */

pushH (O) ;

}

3.4.5 unify_variable_v i

This instruction represents a structure argument which is an unbound variable. In read mode,

it gets the next argument from S and stores it in register w£. In write mode, it pushes a new

unbound variable onto the heap via the H pointer, and stores a reference to it in register Vi.

unify_variable_x : {

if (rmode }

X[VV] = popS;

else { /* copy_variable_x */

x[vv] = a;
pushH (H) ;

} }

uni fy_variabl e__y: {

if (rmode)

Y_ ,, popS;

else { /* copy_variable y */

Y(vv) = H;
puahH (H) ;

} }

3.4.6 unify_void n

This instruction represents a sequence of n structure arguments which are single occurrence

variables. In read mode, the next n arguments are skipped by incrementing H by n. In write

mode, n new unbound variables are pushed onto the heap via the H pointer.

unify void: {

if (rmode)

H += W*4;

else /* copy_void */

for (T=VV; T>0; T--)

pushH (H) ;

}

21

3.5 Control Instructions

3.5.1 allocate n

This instruction appears in a clause with more than one goal in the body. It can be placed

anywhere before the fin'st occurrence of a permanent variable, n is the number of permanent

variables in the clause. The allocate instruction allocates space for the new environment on

the top of the environment stack (or local stack). E is then set pointing to the topmost word of

the new environment (i.e., the topmost valid word of the environment stack).

allocate : {

O = (dmode) ? AsRef(E) :AsList(E) ;

T=VV;

E = TOS+T+4;

ES=T;

EEwU;
m

EB=B;
w

E CP = CP;

)

/* deter tag = 00 (ref) */

/* nondeter tag = 01 (list) */

/* TOS=(B>E)?B:E) for WAM */

/* TOS=(C>E)?C:E) for split */

/* for fast cut */

3.5.2 branch L,n,i

This instruction performs a conditional local branch, calculating the branch target as a two byte

offset, L from the end of the branch instruction. The condition is specified by an integer n.

Temporary register xi is checked for the condition, and if the check is successful, the branch is

taken. Otherwise the next instruction is executed.

branch : {

R =VV;

P += 2; /* realign things */

T = V;

S = X[V]; deref(S);

switch (T) {

case 0: if IsNil(S)

case i: if (fisNil(S))

case 2: if (IsInteger(S)

case 3: if (|(IsInteger(S)

case 4: if (IsInteger(S) &&

case 5: if (IsInteger(S) &&

case 6: if (IsInteger(S) &&

case 7: if (IsInteger(S) &&

} }

P+=R; break;

P+=R; break;

&& (!intval(S))) P+=R; break;

&& (!intval(S)))) P+=R; break;

(intval (S) >0)) P+=R; break;

(intval (S) <=0)) P+=R; break;

(intval (S) >=0)) P+=_; break;

(intval (S)<0) P+=R; break;

22

3.5.3 call L

This instruction terminates a body goal.

the call. P is set to L, the callee address.

call : {

dmode == I;

S = CODEBOT + VVVV;

CP=P+2;

P m S;

)

CP is set to the address of the instruction following

/* segment register addressing */

/* P+2 because strange format */

3.5.4 comp_v n,i,i

This instruction compares register vi with vj for condition n. If the comparison succeeds,

execution proceeds with the next instruction. Otherwise failure occurs.

co._...x: (

R_V;

S = X[V] ;

T m X[V];

goto comparison;

comp_..v: (

R=V;

S = V; S = Y(S);

T - V; T - Y(T);

comparison :

deref (S) ; deref (T) ;

if (! (IsInteger(S) && IsInteger(T))) goto fail;

S = intval(S); T = intval(T);

P += 3; /*

switch (R) {

case O: if

case li if

case 2: if

case 3: if

case 4: if

case 5: if

})

skip over rest of second word */

(S_--T) break; else goto fail;

(S!=T) break; else goto fail;

(S<T) break; else goto fail;

(S>=T) break; else goto fail;

(S>T) break; else goto fail;

(S<=T) break; else goto fail;

3.5.5 cond_v n,i

This instruction tests the tag of register Vi, specified by condition n.

execution proceeds with the next instruction. Otherwise failure occurs.

If the test succeeds,

23

ccnd x : {

T ,IV;

S = X[V] ;

goto condition;

cond_..y : {

T=V;

S = V; S = Y(S);

condition :

darer (S) ;

switch (T) {

case 0: if (TagIsRef{S)) break; goto fail;

case I: if (!TagIsRef(S)) break; goto fail;

case 2: if (IsFunctor(S)[IIsInteger(S)) break; goto fail;

ease 3: if (! (IsFunctcr(S) [IIsInteger(S))) break; goto fail;

ease 4: if (IsList(S)) break; goto fail;

case 5: if (!IsList(S)) break; goto fail;

case 6: if (TagIsStruct(S)) break; goto fail;

case 7: if (!TagIsStruct(S)) break; goto fail;

case 8: if (IsAtom(S)) break; goto fail;

case 9: if (!IsAtom(S)) break; goto fail;

case 10:if (IsInteger(S)) break; goto fail;

case ll:if (!IsInteger(S)) break; goto fail;

case 12:if (TagIsStruct (S) I IIsList (S)) break; goto fail;

case 13:if (! (TagIsStz_ct(S) I [IsList(S))) break; goto fail;

))

3.5.6 cut, cut_strong, and cutd L

There are three types of Lcode cuts: standard cut, strong cut (operates without an enclosing

environment) and disjunctive cut (introduced in [17]). Standard cut requires an enclosing

environment, i.e., a previous allocate instruction within the same clause. As in [4], a state

bit, dmode is dynamically updated indicating if the current environment belongs to a clause with

an associated choice point or to a clause with no choice point. This condition is referred to as the

determinacy of the clause. Cut is implemented by saving, in each environment, the determinacy

bit and a pointer, B (E), pointing to the choice point current when the environment was

allocated. If the current environment is determinate, all choice points more recent than the

environment's choice point are removed, i.e., B is reset to B (E). If the current environment is

nondeterminate, all choice points more recent than and including the environment's choice point

are removed, i.e., B is reset to the choice point below ra (E). If any choice points remain, the

heap backtrack point, HB is cut back to the new current choice point's heap pointer.

Strong cut, cut_strong, is used to cut a predicate without an environment. In this case, the

determinacy bit, dmode, is checked directly. If the predicate is determinate, nothing is done. If

the predicate is nondeterminate, the current choice point, B, is reset to the choice point

immediately preceding it. If any choice points remain, the heap backtrack point, HB is cut back

to the new current choice point's heap pointer. Note that the multiple cut problem occurs for

2,1

clauses of the form

p :- .l,q,!.

for nondeterminate p. Here the second strong cut will attempt to remove p's choice point,

already removed by the first strong cut. Two solutions exist: either generate standard cuts here

(requiring allocation Of an environment), or transform the clause into

Disjunctive cut, cutd, is generated by the compiler only between the "if' and "then" parts of a

conditional. Cuts in a disjunction are translated into cut, thus cutting out of the entire predicate.

Thus cutd is implemented slightly differently than in the PLM. First, the choice point chain is

searched for a choice point matching the cutd operand. The choice point just before (earlier

than) that one is selected. This correctly implements conditionals by cutting out the disjunction

but not the whole predicate when the "then" part fails.

cut : (

B _ E_B;
if nondeterminate (E)

B - B_B;
if (STACKBOT < B)

.n . B_H;
dmode _ i;

}

cut strong: {
if (!dmode) {

B - B_B;

if (STACKBOT < B)

.n = B H;
}

dmode = I;

}

curd: (
S_P +VV;

while (B P I-S)

B = B B;
if (STACKBOT < B)

B = B_B;

if (STACKBOT < B)

HB _ B_H;
)

25

3.5.7 deallocate

This instruction appears before the final execute instruction in a clause with more than one

goal in the body. The previous continuation is restored and the current environment is discarded.

In the case of a single local stack, this instruction resets the environment to either the top of stack
1

or somewhere deep in stack. If E>B, then we use same management scheme as for fall

because the object becomes the new top of stack.

deallocate: {
CP = E CP;

}

3.5.8 execute L

This instruction terminates the final goal in the body of a clause.

L.

execute : {

dmode = I;

P = CODEBOT + VVVV;

)

P is set to the callee address

3.5.9 fail

This operation is used by both the user and system. The x registers, E, P, and CP pointers are

restored from the current Choice point. The trail is "unwound" as far as the choice point trail

pointer, TR (B), by popping references off the trail and resetting the variables they address to

unbound.

Note the choice point is not removed and the B (I3) value is not used during failure. This is

because the choice point is kept until a trust me else fail instruction removes it. A

current choice point can be modified by retry me else instructions, thus saving work. Note

also that H is restored not from H (13), although this would be correct, but rather from HB, the

state register shadowing H (B).

A note about the trail: the trail grows downwards in memory as a stack. The TR pointer points

to the last valid entry on the trail. When a choice point is created, the saved TR (]31 points to the

last trailed address before the choice point jurisdiction. Thus during detrailing upon failure, the

trail is popped until TR==TR (13). This also obviates any need for checking if the trail has

26 °

underflowed.

fail : {

if (I (STAC_BOT < B)) {

printf ("no\n\n") ;

gore top;

} else {
H m H]B;

Z - BE;

P mBP;

S - B_S;
for (TIn0; T<S; T++)

X[T] - B_X(T);

S - B TR;
while (TR < S) {

TR++;

T = *TR;

*T " T;

} }

/* if no more choice pt8*/

/* then program fails */

/* restore choice point */

/

/* if split: S=B(B)-B-7 */

/* restore arg8 */

/* from choice point */
/* detrail */

/* unbind trail address */

3.5.10 jump L

This instruction is an unconditional branch. The target address is calculated as a two byte

offset, L, from end of the jump instruction. L is interpreted as a two byte twos-complement

integer. Jump is used in disjunctions instead of execute to distinguish between local and

global transfer of control.

Jump: {T = W; P += T;}

3.5.11 proceed

This instruction terminates a unit clause. P is reset to CP.

proceed: {dmode -- I; P - CP; }

3.6 Indexing Instructions

3.6.1 hash L,f

This instruction defines a single hash table entry and is placed after a switch constant or

switch_structure instruction, forming the actual hash table as in-line data words. A hash

table entry is two words - the first, L holds the value (a pointer to a clause) and the second, f,

holds the key (a constant). This instruction is not executed, but rather defines data needed by the

previous switch instruction. Note the single argument of the switch instructions must be

27

equal to the number of following hash instructions.

3.6.2 retry L

This instruction is one in the middle of a sequence of instructions identifying clauses with the

same key. The current choice point P (B) entry is assigned the address of the instruction

following the retry instruction and the program pointer P is set to the clause address L.

retry: {

dmode = 0;

B P = P+2;

R=VV;

P +_ R;

}

3.6.3 retry_me_else L

This instruction precedes the code for a clause in the middle of a procedure (i.e. it is not the

fin'st or last clause). The current choice point entry P (B) is assigned the address L.

=itry_me_olse : {

dmode - 0;

B P B P+VV;

}

3.6.4 switch constant n

This instruction defines a hash table for a group of clauses having constants in the first head

argument position. The instruction dereferences x0 and fails if the dereferenced result is not a

constant. Otherwise the constant value is hashed to compute an index in the range 0 to n-1 into

the hash table defined by the words following the switeh...eonstant instruction. The size of

the hash table is n.

Each hash table entry gives access to the clause or clauses whose keys hash to that index. The

constant in x0 is compared with the different keys until one is found which is identical, at which

point the program pointer P is set to point to the corresponding clause or clauses. If the key is

not found, backtracking occurs. See the hash instruction for a description of a hash table entry.

Note that in the Lcode emulator, a hash function was not implemented -- instead a linear

search is used. Implementing an efficient hash function is an important method for speeding-up

28

the emulator.

swltoh constant : {
T -- X[0]; deter(T);

if ((tagof (T) ==integer)
S =VV;

for (W=0;W<S;W++) {

P+=2;

UmP;

RmW;

Z = VVVV;

]l (tagof

/*

/*

/*

/*

/*

/*

if (T--Z) (/*
if (YR) gets fail; /*
P = R+U;]*

gets top;

} })
gets fail;

}

(T)----atom)) {

grab size of table *]
iterate for now */

skip hash opcode */

save P for later c_la */

grab address offset */

grab key */
if match we're done */

recall: fail==0 */

talc instr relatlve addr */

3.6.5 switch_structure n

This instruction provides hash table access to a group of clauses having structures in the first

head argument position. The effect is identical to that of switch constant, except that the

key used is the principal functor of the structure in XO. The instruction fails if XO does not hold a

structure. Again, linear search is implemented instead of a hash function.

switch_structure: {
T = X[0]; deref(T);

if TagIsStruct (T) {
T - *ToRef (T);

S =VV;

for (W=0;W<S;W++) {

P += 2;

U=P;

R=W;

Z = VVVV;

if (T==Z) {

if (_R) gets fail;
P == R+U;

gets top;

} } }
gets fail;
)

3.6.6 switch_type Lc,LI,Ls

This instruction provides access to a group of clauses with a non-variable in the first head

argument. It causes a dispatch on the type of the first argument of the call. The argument XO is

dereferenced and, depending on whether the result is a constant, (non-empty) list, or structure,

the program pointer P is set to Le, L1, or Ls, respectively. If XO is unbound, program

o 29

execution proceeds with the next instruction.

switch term: {

S - X[0]; deref(S);

switch (tagof (S)) {

case ref: P += 6; break;

case stret: P += 2;

case list: P += 2;
1

case atom:

case integer:

U=P;

R=VV;

if (!R) goto fail;

P = R+U;

} }

3.6.7 trust L

This instruction is the last of a sequence of instructions identifying clauses with the same key.

The current choice point is discarded, registers B and HB are reset to correspond to the previous

choice point and the program pointer P is set to the clause address L.

trust : {

R=VV;

P +,= R;

goto trust me else;

)

3.6.8 trust me else fail

This instruction precedes the code for the last clause in a procedure. The current choice point

is discarded, and registers B and HB are reset to correspond to the previous choice point.

trust me else: {

B = B_B;

HB = B_H;

dmode = i;

I

3.6.9 try n,L

This instructionis the first of a sequence of instructions identifying clauses with the same key.

A choice point is created on the top of the choice point stack (which may be the same as the

environment stack, or distinct). L is the address of the next clause, n is the arity of the clause.

HB is then set to the current heap pointer and B is set to point to the top of the new current choice

point. Finally, the program pointer P is set to the clause address L.

30 •

t_y" (
dmode m O;

S =VV;

TmB;

B = (_>E) ?B:E)+S+7;

B_S = S;

B_E = E;

B B = T;
BHmH;

B CP _ CP;

B TR = TR;
f_= (T=0; T<$; T++)

B_X(T) = X[T];
HB=H;

B_P i P+4;
R=VV;

P += R;

}

/* single stack model */

3.7 try_me_else n,L

This instruction precedes the code for the first clause in a procedure with more than one clause.

A choice point is created on the top of the choice point stack (which may be the same as the

environment stack, or distinct). L is the address of the next clause to try. n is the arity of the

clause.

t _".m mme else: {
dmode = 0;
S =,VV;
TiB;

B - ((B>E)?B:E)+S+7;
BS=S;

BErnE;

BB=T;

B_H = H;
B CP = CP;

B TR = TR;

for (T=0; T<S;T++)

B_X(T) = X[T] ;
HB=H;

R=VV;

B P = P+R;

P +== 2;

}

/* single stack model */

/* skip last halfword */

3.8 Arithmetic Instructions

Arithmetic has been included in the Lcode instruction set (c.f., the WAM). Each arithmetic

operator includes two instructions, e.g., add and add_constant. Both of these instructions

modify their destination operand. The compiler must realize this and generate code

31

appropriately. Shown below are the add instructions.

multiply, divide, increment, and decrement.

add i,J,k: {

SmV;

T - intval (X[V]) ;

R - intval (X[V]) ;

X[S] - AIInteger(T+R) ;

}

add_constant i, J, a: {

S=V;

T - intval (X[V]) ;

R = intval (VVVV) ;

X[S] = AsIntege= (T+R) ;

}

Others are similar: subtract, mod,

3.9 General Unifier

This operation is used by several instructions to perform a general unification of two terms.

All calls to the general unifier are immediately followed by an instruction dispatch. Thus the

unifier can do the dispatch itself and need not return to the top-level caller. In addition, the

unifier is written with only one recursive call. These two properties allow the unify code to be

accessed with a simple jump. This design owes much to fruitful discussions with R. O'Keefe of

Quintus Computer Inc.

The general unification algorithm uses a push down list, PDL. The top of PDL pointer is Q,

and the base of the PDL is PDLBOT. Frames on the PDL are three words in length: term #1,

term #2 and arity. Notice the lack of return address. The unifier decides if it should dispatch the

next instruction or return to a recursive call by checking the arity. Initially, the caller loads term

1 into T, term #2 into U and jumps to the unifier.

The unifier initially loads a zero into R and then recursively unifies the two terms. The

unification algorithm calculates, in R, a running total of the arities of complex terms

encountered. Thus R represents the number of recursive iterations necessary to complete the

unification and when R==0, the operation is complete.

32

RmO;

Unify. top:

aeref (U) ; aeref (T) ;

i_ (Ut-T) {

switch (tagof (U)) {

case Eel :

if (IsRef (T) && (U<:T)) bindT(U)

else bindS (T)

break;

case atom: case integer:

switch (tagof (T)) {

case ref :

bindT (U) ; break;

case atom: case strct:

case integer: case list:

Q = PDLBOT; gore fail;

break;

case list:

switch (tagof (T)) {

case tee :

bindT (U) ; break;

case list :

U - AsRef(U); T - AsRef(T);

R +- 2; W = 2;

goto Unify_recurse;

case strct: case atom: case integer:

Q n PDLBOT; gotc fail;

break;

case strct :

switch (tagof (T)) {

case ref :

bindT(U) ; break;

case strct :

U n AsRef(U); Z = *U;

T = AsRef (T);

if ((Z T= *T) I[(!IsFunctor(Z)))

{Q = PDLBOT; goto fail; }

W = arity(Z); R += W;

U += 4; T +: 4;

Unify_recurse • while (W-->0) {

R--;

if (W>O) {

• Q++ = U;

• Q++ : T;

•Q++ = i;}
U = *U;

T _ *T;

gore Unify_top;

Unify_return: W - *--Q;

T = *--Q + 4;

U: *--Q + 4;

}
break;

case list: case atom: case integer:

Q = PDLBOT; goto fail;

break;

})
if (R m_ 0) goto top;

gore Unify_return;

}

• 33

3.10 Built-in Predicates

Built-in predicates are predefined procedures in Prolog. Only a subset of the standard built-ins

[2, 13] are supported by the Lcode system. These include arithmetic comparison, type checking,

I/O, and control facilities. Built-in predicates are categorized as either simple or complex,

depending on how they are implemented. Simple built-ins are implemented with a single Lcode

instruction, and take their arguments from any of the x or Y registers. Complex built-ins are

implemented with the escape instruction, and take their arguments from X0,Xl,... using

standard calling conventions. All of the built-in predicates, except for ca11/1, are safe, i.e.,

they do not modify X registers other then their own arguments. Therefore the X registers can be

allocated across built-ins within a clause. A small set of built-ins (\=/2, not/l, true, and

\+/1) are transformed into other predicates in the pretranslation phase of the compiler.

instruction built-ins

cut

fail

get_value_v...

comp_v
cond v

faillO

=/2

</2, >/2, <=/2,
atom/l,

atomic/I,

composite/I,

integer/i,

list/l,

simple/i,

structure/l,

vat/l,

>=/2, =:=/2, =\=/2

nonatom/1,

nonatomic/1,

noncomposite/1,

noninteger/1,

nonlist/1,

nonsimple/1,

nonstructure/1,

nonvar/l

Table 3-2: Simple Lcode Built-in Predicates

The simple built-in predicates of the Lcode system are listed in Table 3-2, categorized by the

Lcode instruction used to implement them. The complex built-ins are listed in Table 3-3. The

emulator C-code for the first six complex built-ins is listed below. Other complex built-ins are

not listed because they are highly system dependent. The following descriptions assume, as do

the previous instruction descriptions, that the next instruction is dispatched after successful

execution of the built-in.

34
e

_-/2 =../2 arg/3

ca11/1 functor/3 length/2

nl/0 read/l readcell/l

see/l seen/0 tab/0

time/l write/l writecell/l

Table 3-3: Complex Lcode Built-in Predicates

3.10.1 arg/3

This predicate unifies its third argument with a subcomponent of the second argument. The

index of the subcomponent is specified by the first argument. If the second argument is not a list

or a structure or the first argument is not an integer index in the proper range, the predicate fails.

arg: (

R -- X[0]; deref(R); /* Index */

T - X[I]; deref(T); /* Term */

S - X[2]; deref(S); /* Item */

switch (tagof (T)) {

case list :

if IsInteger (R) {

R - intval (R)-I;

if ((R==0) Jl (R==I))

break;

}

goto fail;

case 8trct:

if IsInteger (R) {

I% = intval (R) ;

if ((R > 0) && (R <= arity(*(ToRef(T))))

break;

}
goto fail;

case ref:

case atom:

case integer: goto fail;

)
T = ToRef(T) + 4*R;

goto unify;

)

3S

3.10.2 call/1

This predicate executes the procedure specified by its argument. For example,

call (concat ([1, 2, 3], [4], X)) will cause the execution of

concat([1,2,3], [4],X)). The procedure must be specified as either an atom (if it

requires no arguments) or a structure. Otherwise call/1 fails. If the procedure specified does

is not def'med, call/1 fails. The description below uses the support C-function lookup,

which queries the symbol-table. Several other symbol-table support functions, not shown, are

included in the Lcode system.

call : {

char tempstring [40] ;

T m X[0]; deref(T);

switch (tagof (T)) {

case atom:

S=T;

break;

case strct :

T m ToRef (T) ;

S = *T;

for (R=0, T+=4;R<arity (S) ;R++, T+=4)

X[R] = *T;

break;

case tee :

case list :

case integer: goto fail;

)
CP_P;

/* construct procedure name from structure name and arity */

strcpy (tempstring, symtab [identifier (S)] .key) ;

8trcat (tempstring, itoa (arity (S))) ;

P = lookup(tempstring);

)

int lookup (yytext)

byheptr yytext;

{ int i, yyleng;

yyleng = 8trlen (yytext) ;

for (i=0;i<tahsize;++i)

if (symtab[i] .type _ PROCEDURE)

if (symtab[i] .length _ yyleng)

if (Y8trcmp (symtab [i] .key, yytext))

return (symtab [i] .value+CODEBOT) ;

return (CODEBOT) ;

)

36

3.10.3 functor/3

This predicate can be used either to create a structure or to determine the name and arity
of an

existing structure. LIST...Ftrt_CTOR is the 32-bit identifier representing the "./2" functor.

_nc_or/3 : I
T - X[0]: darer(T);

U - X[I]; darer(u);

W -- X[2]; cteref(W) ;

awitah (tagof (T)) {

case ref:

if (IsAtom(U) && IsInteger(W) && (intval(W)>=0)) {

*T - AsStrct (H) ;

*H - MaskArlty (U, intval (W}) ;

for (Zf(++H), H+=intval(W); Z<H; Z++) *Z = Z;

) else

if (IsInteger(U) && IsInteger (W) && (intvsl _4),,,s0))

*T = U;

else

goto fall ;

gore top;

_ase atom:

case integer:

R - Aslnteger (0);

break;

=ase list :

R I, AsZnteger(2);

T _ LIST_FUNCTOR;

break;

case strct :

T -- * (AsRef (T)) ;

R _ AsZnteger (arity (T}) ;

T _ AsFun_or (ident (T) ,0) ;

break;

)
if (IsRef (W) }

*W = R,

else

if C_!=R} goto fall;

goto unify;

}

37

3.10.4 length/2

If the first argument is a list, this predicate returns the length of the list as the second argument.

If the first argument is unbound or something other than a list, the predicate fails. A list must

have a nil cdr for its last element. Thus, for example, length ([a Ib], X) fails, length/2

is implemented iteratively, successively cdring down the first argument while counting.

length: {

Urn0;

T - X[0];

leng: darer (T) ;

if IsNil(T) {

S - X[I]; darer(s) ;

if TaglsRef (S)

*S = AsInteger(U) ;

else

if (! (Islnteger (S))

goto fail;

) .l.o

if IsList (T) {

U++;

T u ToRaf (T)+4;

goto leng;

} else

goto fail;

I I (intval (S) !=U))

/* get cdr */

38

3.10.5 ==/2

This operation tests whether two terms are exactly equivalent. This code is much simpler than

the unifier, but has the same recursion mechanism.

u/2: {
O = X[0]; T - X[1]: R = 0;

Oniv .top:
d_zef (17) ; deter (T) ;

switch (tagof (O)) {
case ref:

ors@ atom:

case integer:
if (O !n T) {Q m PDLBOT; goto fail; }
break;

case list :

if (!IsList(T)) {Q = PDLBOT; goto fail; }

U - AsRef(U); T n AsRef(T);

R += 2; W = 2;

goto Univ_recurse;
case strct:

if (fIsStrct(T)) {Q = PDLBOT; goto fail;}

U = AsRef(U); Z = *U;

T n AsRef(T);

if ((Z != *T) lJ (!IsFunctor(Z)))

{Q -- PDLBOT; gore fail; }
W m arity(Z); R +s W;

U +_ 4; T += 4;
Univ recurse :

while C_-->O) {

R--;

if (W>0) {

*Q++ = U;

*Q++ = T;

*Q++ = W; }

U = *U;

T = *T;

goto Univ_t op;
Univ return: W = *--Q;

T = *--Q + 4;

O m *--Q + 4;}
break;

}
if (1% n 0) gore top;

goto Univ_return;
}

39

3.10.6 =../2

This operation .either creates a structure from an existing list or decomposes a structure into a

list. N'rL is the 32-bit identifier for the atomic constant representing an empty list.

-../2: {
S = X[O]; deref(S);

T - X[I]; darer(T};

switch tagof (S) {

ease zef :

if (!IsList(T)) goto fail;

W - car(T); Z - cdr(T);

if (ZsInteger_) && ZsNiI(Z)) {

*S = W;

goto top; }

if IsAtom(W) {

Tm Z;

if ZsNil (T) {

*S = W;

goto top; }

*S = AsStrct (H) ;

U = _++;

R=0;

while (!IsNiI(T)) {

R++;

*H++ = car (T);

T = car(T);}

*U = AsFunctor (ident (W) ,R) ;

goto top;

)
goto fail;

case atom:

case integer :

U = AsList (H);

*H++ = S;

*H++ = NIL;

break;

case list :

U = AsList (H) ;

*H++ = LI ST_FUNCTOR;

• *H = _sList (H+I) ; H++;

*H++ = cartS);

*H == AsList (H+I) ; H++;

*H++ = cdr(S);

*H++ = NIL;

break;

case strct :

U = AsList (H);

R s arity(Z = *AsRef(St);

*H++ = AsAtom(ident (Z)) ;

for (w=1; W<=R; w++) (
*H = AsList (H+I) ; H++;

*H++ = * (AsRef (S)+W*4) ;

}
*H++ = NIL;

break;

}
goto unify;

}

4O

Appendix A. Lcode Instruction Set Summary

Table A-I lists each Lcode instruction with its sizes for both word and byte encoding schemes.

Each instruction is listed alphabetically by opcode, with an instance of the assembly code. The

word encoding size is given in units of words. The byte encoding size is given in units of bytes.

Notes concerning Table A-1 follow.

1. Local branch instructions (i.e., branches within a procedure) are given two sizes for

each encoding scheme. The first size corresponds to a short offset of one byte.

The second size corresponds to a long offset of two bytes. For example, with a
byte encoding, branch requires 3 bytes for short offsets and 4 bytes for long
offsets.

2. Non-local branch targets (call and execute instructions) are encoded as a two
byte offset from a segment register.

3.The index instructionsswitch constant and switch structure, have

sizes of 1 word or 2 bytes. This does not include the size of the hash table

following the instruction. During emulation, only one hash entry reference (two
reads -- one for the key, one for the value) is counted in addition to the instruction
fetch.

4. In general, the trust me else operand can be a local clause label. This
facilitates code assertion and retraction. Since assertion/retraction of any kind is
not implemented in the Lcode system, the trust me else instruction is always
given a fail operand. - -

Table A-2 lists each Lcode instruction with associated dynamic statistics measured by

averaging the statistics from the individual benchmark programs (CHAT, PLM, QC1 and ILI).

Instructions not executed in any of the programs are not included in the table. The mean

instruction frequency, data and instruction references per instruction (in bytes) and percent

weight are sliown. Instruction weight is calculated as the product of instruction frequency and

references per instruction. All instructions have a fixed number of instruction references (except

for the indexing instructions for which instruction references were not accurately measured).

Notes concerning Table A-2 follow.

1. The escape statistics are averaged over those built-ins present in the benchmarks.

2. The failure statistics are averaged over all failures. No instruction bytes are
referenced because failure is similar to a software trap.

3.The get_constant, put_constant and unify_constant instructionsare
further categorized as atom or integer. All the statistics presented as additive,

so that for instance, get_constant accounts for 2.046% of all instructions

executed, with 1.67% of the total weight. Note the benchmarks show a strong bias
towards symbolic rather than arithmetic computation.

4. The Lcode compiler did not have the ability to generate unify_value

instructions. Only the unoptimized form of unify_local_value instructions

41

were generated. For read mode, these instructions are equivalent, and are listed as

unify_value.

5. Copy instructions correspond to unify instructions executed in write mode.

6. In write mode, a unify local_value instruction dereferences its operand and

globalizes it onto the heap if necessary. The copy local_value category
corresponds to write mode execution of unify_local_value instructions that
do require globalization.

7. The copy_value category corresponds not to unify_value instructions

executed in write mode, but rather to unify_local.._value instructions that did
not require globalization (in this case, execution of the two forms are identical,
except for the extra dereference). Note that globalization was required only about
1 in 9 times.

Table A-3 summarizes these statistics by instruction type, as defined in Table 3-1. The

instruction types are listed in order of greatest percent weight. These statistics consider failure,

general unification, and escape as separate instruction types. Therefore the cost of general

unification is not counted in the head or structure matching groups. Note that the indexing

weight is highly optimistic, calculated assuming perfect hashing.

42

opcode
add

add constant

allocate

branch(1)

call (2)

comp_z

comp__y
cond x

conCy

cut

cutd

cut_strong
deallocate

decrement

divide

divide constant

escape
execute

fail

get_constant

get_list

get_nil

get_structure

get_value_x

get_value_y

get_variable_x

get_variable_y
increment

jump

mod

mod constant

multiply

multiply_constant

proceed

Table A-l:

assembly instance
add Xl, X2, x3

add constant Xl,X2,15

allocate 8

branch nil,X1,_1234
call 1234

comp <, Xl, X2

comp <, YI, Y2

cond var, X1

cond var, Y1

cut

cutd 1234

cut_strong
deallocate

decrement x1, x2

divide X1, X2, X3

divide constant X1,X2,15

escape 3

execute 1234

fail

get_constant X1, -44

get_list X1

get_nil X1

get_structure X1, f/4

get_value X1, X2

get_value YI, X2

get_variable X1, X2

get_variable Y1, X2

increment X1, X2

jump 1234

mod XI, X2, X3

mod constant X1, X2, 15

multiply X1, X2, X3

multiply_constant X1, X2, 15

proceed

Lcode Instruction Set Formats

words

1
2

1
1
1

1
1

1
1
I

I
I
I

I
I

2
1

1
1
2

i
1
2

1
I

1

I
1
1
1

2
I

2
I

bytes
3
6

2
3/4

3
3
4

2
3
1

2/3
1
1

2
3

6
2

3
1

6
2
2

6
2

3
2

3
2
2/3

3
6

3
6
1

43

opcode assembly instance

put_constant put_constant XI, -44

put_list put_list X1

put_nil put_nil X1

put_structure put_structure X1, f/4

put_unsafe_integer_x put_unsafe_integer Xl

put_unsafe_integer_y put_unsafe_integer Y1

put_unsafe_value_y

put_va lue_x

put_va lue_y

put_variable x

put_va riab ie_y

retry

retry me else

stop

subtract

subtract constant

switch constant (3)

switch structure

switch term

trust

trust me else (4)

try

try. me else

unify_constant

unify_local_value x

uni fy_local_value--y

unify_nil

un i fy_va lue_x

uni fy_va lue_y

uni fy_variable_x

uni fy_variable_y

unify_void

put_unsafe_value YI,X2

put_value Xl, X2

put_value Y1, X2

put_variable X1, X2

put_variable Y1, X2

retry _1234

retry, me else _1234

stop

subtract Xl, X2, X3

subtract constant X1,X2,15

switch constant 8

switch structure 8

switch_term _123, fail,_123
trust 1234

trust me else fail

try 8,_1234

try me_else 8,_1234

unify_constant -44

unify_local_value x X1

uni fy_local_value=y Y1

unify_nil

uni fy_value_x Xl

uni fy_value_y Y1

uni fy_variable_x X1

uni fy_variable__y Y1

unify_void 8

words byte,_
2 6
1 2

1 2
2 6

1 2
1 2

1 3
1 2

1 3
1 2

1 3
1 2/3
1 2/3

1 1
1 3

2 6
1+2 2+8
1+2 2+8

1/2 4/7
1 2/3

1 1
1 3/4

1 3/4
2 5

1 2
1 2
1 1

1 2
1 2

1 2
1 2
1 2

Table A-l: Lcode Instruction Set Formats - continued

44

9pcode
add

add constant

allocate

call

comp_x

comp_y
cond x

i

cond_y
cut

cutd

cut_strong
deallocate

decrement

divide constant

escape_1)

execute

failure (2)

get_atom (3)
get_integer (3)
get_list

get_nil

get_structure

get_value x

get_va lue--_y

get_variable_x

get_variable_y
increment

jump

proceed

put_at om

put_integer

put_list

pu t_n ii

Table A-2: Lcode

% data instr %

instr bytes bytes weight
0.026 0.00 3 0.01
0.014 0.00 6 0.01

3.491 16.00 2 5.27
3.347 0.00 3 0.84
0.151 1.35 3 0.05

0.114 6.04 4 0.12
1.104 1.10 2 0.23

0.416 7.20 3 0.29
0.859 14.88 1 1.18

0.247 12.53 2 0.30
0.628 6.84 1 0.43
1.670 8.00 1 1.26

0.047 0.00 2 0.01
0.026 0.00 6 0.01
1.119 23.62 2 2.60

3.037 0.00 3 0.76
6.009 44.59 0 22.49

1.823 4.40 6 1.49
0.223 4.52 6 0.18

5.117 2.64 2 1.88
0.500 3.20 2 0.20
6.437 5.83 6 6.52

1.953 11.17 2 2.13
0.187 13.21 3 0.25
0.560 0.00 2 0.09
6.051 4.00 3 3.56

0.234 0.00 2 0.04
0.359 0.00 2 0.06

2.447 0.00 1 0.21
0.254 0.00 6 0.13
0.107 0.00 6 0.05

0.531 0.00 2 0.09
0.049 0.00 2 0.01

Instruction Reference Characteristics

45

type

% data instr %

instr bytes bytes weight
2.647 0.00 2 0.44
6.878 4.00 3 4.04

0.383 4.00 6 0.32
0.277 0.40 2 0.06

0.096 3.04 2 0.05
1.617 8.61 3 1.57

0.372 4.00 2 0.19
2.475 4.00 3 1.45

0.768 4.00 2 0.39
2,133 4.00 2 1.07

0.867 0.61 10 0.75
0.914 4.72 10 1.12

3.657 0.51 4 1.36
0.267 7.93 2 0.22
2.842 8.00 1 2.15
0.330 44.17 3 1.34

4.414 42.64 3 16.69

0.890 5.12 5 0.71
0.092 4.20 5 0.07
0.051 3.37 1 0.03

0.905 26.86 2 2.11

0.042 6.74 2 0.05
6.257 4.00 2 3.15

2.627 8.00 2 2.20
3.099 0.00 2 0.52
0.396 4.00 5 0.30

0.270 4.00 5 0.20
0.230 6.33 2 0.18
0.103 11.89 2 0.11

0.398 4.00 1 0.17
1.928 5.90 2 1.26

0.912 10.65 2 0.94
1.794 4.00 2 0.90
1.110 8.00 2 0.93

0.302 5.24 2 0.19

put_value_x

put_va lue_y

put_structure

put_unsa fe_integer_x

put_unsafe_integer_y

put_unsa fe_value_y

put_variable x

put_variablCy

retry

retry, me else
switch constant

switch structure

switch term

trust

trust me else

try

try me else

un i fy _at om

unify_integer

unifynil

unify_value_x (4)

un i fy _va lue_y

unify_variable_x

unify_variable_y

unify_void

copy_atom (5)

copy_integer

copy_local_value_x (6)

copy_local_va lue_y

copy_nil

copy_value_x (7)

copy_va lue_y

copy_variable_x

copy_variable_y

copy_void

Table A-2: Lcode Instruction Reference Characteristics - continued

46

%

type instr

procedure control 12.59
failure 6.36
head matching 20.94

structure matching 19.97
clause control 14.11

goal matching 14.15
unification 3.11

escape 1.49

indexing 7.55
arithmetic 0.39

Table A-3: Lcode

data instr %

b.,t'tes bytes weight
14.18 1.80 24.31

38.24 21.32
6.75 3.44 13.91
6.01 2.44 12.83

4.80 2.20 9.35

2.45 3.25 8.77
14.36 3.54

16.66 2.00 3.00
3.78 2.75 2.89

0.00 3.80 0.09

Characteristics by Type

47

References

[1]

[2]

[3]

[41

[5]

[6]

[7]

[8]

[9]

[10]

[11]

R. Butler, E. L. Lusk, R. Olson, and R. A. Overbeek.

ANLWAM: A Parallel Implmentation of the Warren Abstract Machine.
Internal Report, Argonne National Laboratory, Argonne, IL 60439, 1986.

L. Byrd, F. C. N. Pereira, and D. H. D. Warren.
A Guide to Version 3 ofDEC-IO PROLOG.
Technical Report 19, Dept. of Artificial Intelligence, University of Edinburgh, July,

1980.

M. Carlsson.

Compilation for Tricia and its Abstract Machine.
Technical Report 35, UPMAIL, Uppsala University, September, 1986.

T. P. Dobry, A. M. Despain, and Y. N. Patt.

Performance Studies of a Prolog Machine Architecture.
In 12th Annual International Symposium on Computer Architecture, pages 180-190.

IEEE Computer Society, December, 1985.

B. Fagin and T. P. Dobry.
The Berkeley PLM Instruction Set: An Instruction Set for Prolog.

Research Report UCB/CSD 86/257, Computer Science Division, University of California
at Berkeley, September, 1985.

J. Gabriel, T. G. Lindholm, E. L. Lusk, and R. A. Overbeek.

A Tutorial on the Warren Abstract Machine for Computational Logic.
Research Paper ANL-84-84, Argonne National Laboratory, Argonne, IL 60439, June,

1985.

J. Gee, S. W. Melvin, Y. N. Patt.

Advantages of Implementing Prolog by Microprogramming a Host General Purpose
Computer.

In Fourth International Conference on Logic Programming. University of Melborne,
MIT Press, May, 1987.

M. V. Hermenegildo.
Restricted AND-Parallel Prolog and its Architecture.
Kluwer Academic Publishers, Norwell, MA 02061, 1987.

S. C. Johnson.

YACC - Yet Another Compiler Compiler.
Unix Programmer's Manual.

M. E. Lesk and E. Schmidt.

LEX - Lexical Analyzer Generator.
Unix Programmer's Manual.

J. Levy.
A GHC Abstract Machine and Instruction Set.

In Third International Conference on Logic Programming, pages 157-171. Imperial

College, Springer-Verlag, July, 1986.

48

[12]

[13]

[14]

[15]

[16]

[17]

[18]

H. Nakashima and K. Nakajima.

Hardware Architecture of the Sequential Inference Machine: PSI-II.
In 1987 International Symposium on Logic Programming. IEEE Computer Society,

August, 1987.

Quintus Prolog User's Guide and Reference Manual - Version 6.
Quintus Computer Systems Inc., Mountain View CA 94041.

April, 1986

E. Tick and D. H. D. Warren.

Towards a Pipelined Prolog Processor.
In 1984 International Symposium on Logic Programming. IEEE Computer Society,

February, i984.
also in New Generation Computing, 2(4):323-345.

E. Tick.

Lisp and Prolog Memory Performance.
Technical Report CSL-TR-86-291, Computer Systems Laboratory, Stanford University,

Stanford, CA 94305, January, 1986.

E. Tick.

Studies In Prolog Architectures.

PhD thesis, Stanford University, June, 1987.

P. Van Roy.
A Prolog Compiler for the PLM.

Master's thesis, University of California at Berkeley, August, 1984.
also available as TechnicalReport UCB/CSD 84/203.

D. H. D. Warren.

Applied Logic -- Its Use and Implementation as Programming Tool.
PhD thesis, University of Edinburgh, 1977.
also available as SRI Technical Note 290.

[19] D.H.D. Warren.

An Improved Prolog Implementation which Optimises Tail Recursion.

Research Paper 156, Dept. of Artificial Intelligence, University of Edinburgh, 1980.

[20] D.H.D. Warren.

An Abstract Prolog Instruction Set.

Technical Report 309, Artificial Intelligence Center, SRI International, 1983.

